2,2-BIS(TRIFLUOROMETHYL)ETHYLENE-1,1-DICARBONITRILE AND STYRENES A DICHOTOMY OF CYCLOADDITION PATHWAYS ¹

Reinhard Brückner, Rolf Huisgen^{*}, and Jörg Schmid Institut für Organische Chemie der Universität München Karlstr. 23, 8000 München 2, Germany

Summary: The title compounds undergo reversible Diels-Alder reactions and irreversible [2+2] cycloadditions. The nonaromatic Diels-Alder adducts were isolated and subjected to [4+2] cycloadditions with *N*-methyl-triazolinedione.

Middleton prepared 2,2-bis(trifluoromethyl)ethylene-1,1-dicarbonitrile (BTF; 2) and described its [2+2] and [2+4] cycloadditions ². Cycloadducts of styrene and 4-methoxystyrene - the first reversibly formed - were considered as the cyclobutanes **3a** and **3j**. In a thorough study, we never encountered noticeable equilibration of a cyclobutane with the two constituent olefins ^{3,4}. A reinvestigation of Middleton's experiments showed structure **3j** being correct and **3a** incorrect. With styrene and derivatives as donor olefins, BTF furnished [4+2] cycloadducts **1** under conditions of *kinetic* control whereas [2+2] cycloadducts **3** arose under *thermodynamic* control.

	Yield	mp [°C]	R ¹	R ²		Yield	mp [°C]
1a	85%	76-76.5	н	н	За	46%	83-83.5
1b	79%	84-85	F	Н	Зb	35%	93-96
1c	65%	67-68	CI	Н	3c	34%	-
1d	64%	49-51	Br	н	3d	24%	115-116
1e	63%	96-102	Me	н	3e	52%	110-111
1f	78%	66.5-68	<i>t</i> Bu	н	3f	86%	oil
1g	NMR experiment		н	Ph	3g	87%	127-127.5
1h	82%	93.5-94	н	Me	11a	59%	68-69
1i	75%	75-78	CI	Me	11b	77%	glassy
1j	not observed		OMe	Н	3 j ²	85%	103-104
1k	not observed		SMe	н	Зk	76%	106-106.5
11	not observed		H	OMe	31	63%	111.5-112

The nonaromatic tetrahydronaphthalenes 1 were readily isolable ⁵ since they crystallized analytically pure - 30s to 1d after combining the reactants in pentane at room temperature (1g was examined in solution only). In solution, the Diels-Alder adducts **1a-i** dissociate by [4+2] cycloreversions to a variable extent. The dissociation is the smallest for the adduct 1f of 4-*tert*butylstyrene (20% in 1 M benzene solution at 25° C) and largest for compound 1d obtained from *p*-bromostyrene (62%). Rate and equilibrium constants will be discussed in the accompanying paper.

The styrene adduct 1a crystallized after 20 min. The two doublets of triplets in the ¹H NMR spectrum (CDCl₃) were assigned to 3-H₂ (δ 2.65, 2.94); $J_{gem} = 19.4$ Hz would be too large for a cyclobutane ⁶, but fits the allylic position of a 6-membered ring. The homoallylic coupling $J_{3,8a}$ and - by coincidence - $J_{3,4}$ amount to 4.4 Hz for 3-H_A and to 4.7 Hz for 3-H_B. The unresolved m of five vinyl-H at δ 5.6-6.3 is the absorption at lowest field, except for that of styrene in equilibrium with 1a. The ¹⁹F NMR signals occur at δ -68.1 and -68.8 with $J_{F,F} = 10.8$ Hz. The spectra of the other [4+2] cycloadducts 1 are closely related. The binding sites of the CF₃ (at C-2) and C=N groups (at C-1) in adducts 1 are unproven but plausible. In the regioisomer the CF₃ groups would be located at the sterically more hindered position C-1. Furthermore, the suggested regioselectivity of the Diels-Alder reaction leading to 1 is favored by the AO coefficients and corresponds to the known cycloadduct 4 of methyl α -cyanoacrylate and styrene (subsequent HBr elimination) ⁷.

Tetracyanoethylene (TCNE) was supposed not to combine with styrene at room temperature, in contrast to 4-methoxystyrene ⁸. However, Nakahara et al. observed that the red CT color rapidly diminished at 8 kbar, and the ¹³C NMR spectrum at -50°C suggested the [4+2] cycloadduct 5, $R = H^9$. Due to the high dissociation, adducts 5, R = H, Cl, Br, CH₃, OCH₃, have not been isolated ¹⁰; only for 5, $R = OCH_3$, a subsequent conversion to the cyclobutane was noticed ¹¹. The role of styrene as a diene in Diels-Alder reactions is well-documented ¹², but cycloadducts analogous to 1 either add a second equivalent of dienophile to the built-in cyclohexadiene unit or rearomatize by 1,3-prototropy. To the best of our knowledge, **6** is the only representative of primary Diels-Alder adducts which has been isolated ¹³ prior to our work.

It is remarkable that 1 and 5 fail to add a second molecule of the acceptor olefin; possibly, a decrease of the HO energy by the electron-attracting substituents is responsible. Dimethyl acetylenedicarboxylate or azodicarboxylate were likewise inert toward 1a. Gratifyingly, *N*-methyltriazolinedione (7) as a more potent dienophile furnished the Diels-Alder adducts 8, thus

confirming the 1,3-diene character of 1. Styrene itself combines with 7 providing various 1:2 adducts ¹⁴. We suppressed this undesired reaction by diminishing the equilibrium concentration of styrene alongside 1a. Styrene was reacted with 6 equiv of BTF in CH_2CI_2 ; now 1 equiv of 7 at -18°C converted 1a into 8a. The adducts 8 obtained in 62-73% yield were structurally homogenous; it is a safe assumption that 7 approaches 1 from the less hindered side.

The ¹H NMR spectrum (D₆-DMSO) of **8a** shows the AB pattern of 7-H₂ (δ 2.83 and 3.20, $J_{gem} = 18.8$ Hz) further split by coupling with the olefinic 8-H (m_c δ 6.20) and the homoallylic 4a-H (m_c δ 3.48); the vinylic 9-H and 10-H occur as m_c at δ 6.59. The lack of signals for aromatic H and for NH excluded the conceivable ene product 9. The assignments were endorsed by the simpler spectra of the mono- and disubstituted representatives, **8b** - **8e**.

Competing with the *reversible* formation of 1 is the *irreversible* [2+2] cycloaddition; in the energy balance the loss of aromatic resonance in 1 exceeds the ring strain in cyclobutane 3. Styrene and BTF combined at room temperature in pentane, and 86% of the [4+2] adduct 1a crystallized after 20 min. When the reaction was run for 32 days, 1a dissolved again and 46% of cyclobutane 3a was isolated. 4-Methylstyrene + BTF afforded 52% of 3e after 3 days, whereas the reaction of 4-(methylthio)styrene required only 2 min (76% 3k). Finally, the [2+2] cycloaddition of α -methoxystyrene + BTF was finished after 5 sec as the fading of the CT complex color indicated. The steep rise in the rate of [2+2] cycloaddition reflects the stabilization of the benzyl type carbenium ion by substituents and is in harmony with the intermediacy of zwitterion 10.

Thus, for styrene + BTF the [4+2] cycloaddition surpasses the cyclobutane formation in rate, but the [2+2] cycloaddition wins out with increasing stability of the 1,4-dipole 10; no [4+2] cycloadducts were observed with 4-methoxy-, 4-(methylthio)-, or α -methoxystyrene. This evidence suggests that the [4+2] cycloaddition *does not pass the same intermediate* 10.

The 100 MHz ¹⁹F-decoupled ¹H NMR spectrum (CDCl₃) of **3a** reveals a well-resolved ABX type at δ 2.80, 3.23, and 4.49 for 3-H₂ and 4-H ($J_{3A,3B}$ = 13.9, $J_{3A,4}$ = 10.0, $J_{3B,4}$ = 11.4 Hz); C₆H₅ protons occur at δ 7.2-7.6. Similar spectra of the other cyclobutanes **3** leave no doubt about the structure. The yields of isolated **3** listed in the table are not optimized.

 α -Methylstyrene or its 4-chloro derivative and BTF entered into the [4+2] cycloaddition, but the subsequent irreversible reaction (4 weeks) generated the ene products **11a** and **11b**. The two vinyl-H of **11a** are found as singlet at δ_H 5.46, and the singlet of 3-H₂ at 3.27 is broadened by long range coupling with ¹⁹F. The acidic 1-H (δ_H 3.94) exchanges with CH₃OD. The intervention of 1,4-dipole **10** on the way to **11** is plausible, but a concerted pathway is not ruled out. 1,1-Diphenylethylene and BTF furnished cyclobutane **3g** under conditions of thermodynamic control.

The stable Diels-Alder adduct 12 (68%, mp 125-126°C) is formed from 1-vinylnaphthalene + BTF; only 20-22 kcal mol⁻¹ of aromatic resonance are sacrificed here in contrast to \approx 36 kcal mol⁻¹ for styrene + BTF \rightarrow 1a; the TCNE adduct of 1-vinylnaphthalene is likewise known ¹⁵. 2,6-Dimethyl-styrene constitutes another limiting case. Its nonplanarity ¹⁶ is probably accountable for its failure to undergo the Diels-Alder reaction with BTF; the cyclobutane 13 (4d, 67%, mp 114-115°C) results directly.

REFERENCES AND NOTES

- 1. Dedicated to Professor Günther Wilke, Mülheim, on the occasion of his sixty-fifth birthday.
- 2. Middleton, W.J. J. Org. Chem. 1965, 30, 1402.
- 3. Huisgen, R.; Brückner, R. Tetrahedron Lett. 1990, 31, 2553.
- 4. Brückner, R.; Huisgen, R. Tetrahedron Lett. 1990, 31, 2561.
- 5. All new compounds gave satisfactory combustion analyses and ¹H NMR spectra.
- 6. Cookson, R.C.; Crabb, T.J.; Frankel, J.J.; Hudec, J. Tetrahedron Suppl. 1966, 7, 355.
- 7. Rasoul, H.A.A.; Hall Jr., H.K. J. Org. Chem. 1982, 47, 2080.
- 8. Williams, J.K.; Wiley, D.W.; McKusick, B.C. J. Am. Chem. Soc. 196, 84, 2210.
- 9. Nakahara, M.; Uosaki, Y.; Sasaki; M.; Osugi, J. Bull. Chem. Soc. Jpn. 1980, 53, 3395.
- 10. Uosaki, Y.; Nakahara, M.; Osugi, J. Bull. Chem. Soc. Jpn. 1981, 54, 2569, 3681.
- 11. Uosaki, Y.; Nakahara, M.; Osugi, J. Int. J. Chem. Kinet. 1982, 14, 985; 1983, 15, 805.
- 12. Review: Wagner-Jauregg, T. Synthesis 1980, 769.
- Aziz, G.; Sakla, A.B.; Abdon, S.E. Indian J. Chem., Sect. (B) 1976, 14, 53; C.A. 1976, 85, 20789x.
- 14. Wagener, K.B.; Turner, S.R.; Butler, G.B. J. Polym. Sci., Polym. Lett. Ed. 1972, 10, 805.
- Shirota, Y.; Nagata, J.; Nakano, Y.; Nogami, T.; Mikawa, H. J. Chem. Soc., Perkin Trans. / 1977, 14.
- Kobayashi, T.; Arai, T.; Sakuragi, H.; Tokumaru, K.; Utsunomiya, C. Bull. Chem. Soc. Jpn. 1981, 54, 1658.

(Received in Germany 4 October 1990)